Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex.

نویسندگان

  • B J Hillier
  • K S Christopherson
  • K E Prehoda
  • D S Bredt
  • W A Lim
چکیده

The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PDZ domain has two opposite interaction surfaces-one face has the canonical peptide binding groove, whereas the other has a beta-hairpin "finger." This nNOS beta finger docks in the syntrophin peptide binding groove, mimicking a peptide ligand, except that a sharp beta turn replaces the normally required carboxyl terminus. This structure explains how PDZ domains can participate in diverse interaction modes to assemble protein networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4

alpha-Syntrophin is a scaffolding adapter protein expressed primarily on the sarcolemma of skeletal muscle. The COOH-terminal half of alpha-syntrophin binds to dystrophin and related proteins, leaving the PSD-95, discs-large, ZO-1 (PDZ) domain free to recruit other proteins to the dystrophin complex. We investigated the function of the PDZ domain of alpha-syntrophin in vivo by generating transg...

متن کامل

Energetic determinants of internal motif recognition by PDZ domains.

PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with t...

متن کامل

Solution structure and backbone dynamics of the second PDZ domain of postsynaptic density-95.

The second PDZ domain of postsynaptic density-95 (PSD-95 PDZ2) plays a critical role in coupling N-methyl-D-aspartate receptors to neuronal nitric oxide synthase (nNOS). In this work, the solution structure of PSD-95 PDZ2 was determined to high resolution by NMR spectroscopy. The structure of PSD-95 PDZ2 was compared in detail with that of alpha1-syntrophin PDZ domain, as the PDZ domains share ...

متن کامل

Interaction of Nitric Oxide Synthase with the Postsynaptic Density Protein PSD-95 and α1-Syntrophin Mediated by PDZ Domains

Neuronal nitric oxide synthase (nNOS) is concentrated at synaptic junctions in brain and motor endplates in skeletal muscle. Here, we show that the N-terminus of nNOS, which contains a PDZ protein motif, interacts with similar motifs in postsynaptic density-95 protein (PSD-95) and a related novel protein, PSD-93.nNOS and PSD-95 are coexpressed in numerous neuronal populations, and a PSD-95/nNOS...

متن کامل

Vasomodulation by skeletal muscle-derived nitric oxide requires alpha-syntrophin-mediated sarcolemmal localization of neuronal Nitric oxide synthase.

Neuronal nitric oxide synthase (nNOS) is abundantly expressed in skeletal muscle where it associates with the dystrophin complex at the sarcolemma by binding to the PDZ domain of alpha-syntrophin. Nitric oxide (NO) produced by skeletal muscle nNOS is proposed to regulate blood flow in exercising muscle by diffusing from the skeletal muscle fibers to the nearby microvessels where it attenuates a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 284 5415  شماره 

صفحات  -

تاریخ انتشار 1999